25
Models for dose-response

When the subjects in a study receive different levels of exposure, measured
on a quantitative or ordered scale, it is likely that any effect of exposure
will increase (or decrease) systematically with the level of exposure. This
is known as a dose-response relationship, or trend. The existence of such a
relationship provides more convincing evidence of a causal effect of exposure
than a simple comparison of exposed with unexposed subjects. Some simple
procedures for testing for trend were introduced in Chapter 20. These
tests are based on a log-linear dose-response relationship, that is, a linear
relationship between the log rate parameter (or log odds parameter) and
the level of exposure. We now return to this topic and show how such
dose-response relationships are easily described as regression models.

25.1 Estimating the dose-response relationship

To illustrate the use of regression models when exposure is measured on a
quantitative scale we shall use the case-control study of alcohol and tobacco
in oral cancer in which there are two exposure variables, both with four
levels. The model

log(Odds) = Corner + Alcohol 4+ Tobacco,

in which alcohol and tobacco are categorical variables each with four levels,
makes no assumption about dose-response; there are three alcohol parame-
ters and three tobacco parameters. The estimated values of these parame-
ters are shown in Table 25.1. If we were able to assume simple dose-response
relationships for these two exposures, we could concentrate the available
information into fewer parameters and, as a result, gain power.

To study the dose-response for tobacco consumption it helps to change
from the parameters Tobacco(1l), Tobacco(2), and Tobacco(3), which are
chosen to compare each level of exposure with level 0, to

Tobacco(1) , Tobacco(2)—Tobacco(l) , Tobacco(3)—Tobacco(2) ,
which are chosen to compare each level with the one before.

Exercise 25.1. Use the results of Table 25.1 to write down the estimated values
of these new parameters. Repeat the exercise for alcohol.
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Table 25.1. Alcohol and tobacco treated as categorical variables

Parameter Estimate SD
Corner —1.6090 0.2654

Alcohol(1) 0.2897 0.2327
Alcohol(2) 0.8437 0.2383
Alcohol(3) 1.3780 0.2256

Tobacco(1) 0.5887 0.2844
Tobacco(2) 1.0260 0.2544
Tobacco(3) 1.4090 0.2823

Table 25.2. The linear effect of tobacco consumption
Alcohol Tobacco log(Odds) = Corner + - - -

1x[Tobacco]

2x[Tobacco]

3x[Tobacco]

Alcohol(1)

Alcohol(1) + 1x[Tobacco]
Alcohol(1) + 2x[Tobacco]
Alcohol(1) + 3x[Tobacco]
Alcohol(2)

Alcohol(2) + 1x[Tobacco]
Alcohol(2) + 2x[Tobacco]
Alcohol(2) + 3x[Tobacco]
Alcohol(3)

Alcohol(3) + 1x[Tobacco]
Alcohol(3) + 2x[Tobacco)
Alcohol(3) + 3x[Tobacco]
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. The simplest possible dose-response model would assume that each step
in toba_.cco consumption, from one level to the next, produces the same
change in the log odds. This model requires only one parameter for tobacco
p.amely the common change in log odds per change in level. This p:«.tr:«.mme’cexi
is called the linear effect of tobacco and we shall write it as{Tobacco], where
the brackets are used to distinguish the linear effect parameter fr(7)m the
separate effect parameters for each level. The model is written in full in
Table 25.2.

. The data from this study are in the form of frequency records contain-
ing the number of cases, the total number of cases and controls, alcohol
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Table 25.3. Linear effect of tobacco per level

Parameter Estimate SD
Corner —1.5250 0.219

Alcohol(1) = 0.3020 0.232
Alcohol(2)  0.8579 0.237
Alcohol(3)  1.3880 0.225

[Tobacco] = 0.4541 0.083

consumption coded as 0, 1, 2, 3, and tobacco consumption coded as 0, 1,
2, 3. We shall write the model of Table 25.2 in the abbreviated form:

log(Odds) = Corner + Alcohol + [Tobaccol.

The regression prograin output for this model is illustrated in Table 25.3.

Exercise 25.2. How would you report the meaning of the number 0.4541 in
Table 25.3?

A more accurate scale for tobacco consumption would be to use the mid-
points of the ranges of tobacco use at each level, namely 0, 10, 30, and (say)
50 cigarettes per day. If the tobacco variable were coded in this way then
the parameter [Tobacco] would refer to the linear effect per extra cigarette
rather than per change of level. If the data were entered as individual
records then the individual values for consumption could be used. In view
of the uncertainties in measuring tobacco use there is something to be said
for sticking to the scale 0, 1, 2, 3.

The reparametrization of the alcohol effects carried out in Exercise 25.1
also suggests a constant effect with increasing level of alcohol consumption.
This allows the model to be further simplified to

log(Odds) = Corner + [Alcohol] + [Tobacco],

where the parameter [Alcohol] is the common effect of an increase of one
level in alcohol consumption. The regression output for this model is shown
in Table 25.4.

Exercise 25.3. Use the output in Table 25.4 to work out what the model predicts
for the combined effect of level 3 for tobacco and level 3 for alcohol compared to
level 0 for both. Use the output in Table 25.1 to work out the same prediction
when tobacco and alcohol are both treated as categorical.

For comparison we also show, in Table 25.5, the regression output for
the model where alcohol consumption is measured in approximate mean
ounces of alcohol per day for each category (0.0, 0.2, 1.0 and 2.0), and
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Table 25.4. Linear effects of alcohol and tobacco per level

Parameter Estimate SD
Corner —1.6290 0.1860

[Alcohol] 0.4901 0.0676
[Tobacco] 0.4517 0.0833

Table 25.5. Alcohol in ounces/day and tobacco in cigarettes/day

Parameter Estimate SD

Corner —1.2657 0.1539
[Aleohol) 0.6484  0.0881
[Tobacco] 0.0253  0.0046

tobacco consumption is measured in approximate cigarettes per day for
each category (0, 10, 30, or 50). The [Alcohol] and [Tobacco] parameters
now look quite different from those in Table 25.4, but this is because they
are measured per ounce of alcohol and per cigarette respectively.

TESTING FOR TREND
Comparison of log likelihoods for the models

log(Odds) = Corner + Alcohol + [Tobacco]
and
log(Odds) = Corner + Alcohol

yields a one degree of freedom test for the effect of tobacco controlled for
the effect of alcohol. The Mantel extension test described in Chapter 20 is
the corresponding score test, which tests the hypothesis that the [Tobacco]
parameter takes the value zero.

TESTING FOR DEPARTURE FROM LINEARITY
To test for departures from linearity in the dose-response for tobacco, the
models

log(Odds) = Corner + Alcohol + Tobacco
log(Odds) = Corner + Alcohol + [Tobaccol,

can be compared. In the first model Tobacco refers to the three effects
of a categorical variable with 4 levels, while in the second [Tobacco] refers
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Table 25.6. A quadratic dose-response relationship for tobacco

z (2)? log(Odds) = Corner + ---
0 0o -

1 1  1x|Tobacco] + 1x[Tobsq]
2 4  2x[Tobacco] + 4x[Tobsq]
3 9  3x[Tobacco] + 9x[Tobsq]

Table 25.7. Predictions from a quadratic relationship

Effect Predicted from model
Tobacco(1) [Tobacco] + 1x[Tobsq]
Tobacco(2) — Tobacco(1) [Tobacco] + 3x[Tobsq]
Tobacco(3) — Tobacco(2) [Tobacco] + 5x[Tobsq]

to the effect of a change of one level in tobacco consumption. The second
model is a special case of the first, so they can be compared using a log
likelihood ratio test.

Exercise 25.4. (a) How many parameters are there in the two models? (b)
Reparametrize the models so that the second model is a special case of the first,
with two parameters set to zero. (c) How would you interpret a significant dif-
ference between the fit of these two models?

n

25.2 Quadratic dose-response relationships

The simplest departure from a log-linear dose relationship is a log-quadratic
relationship. To fit this model it is necessary to create a new dose variable
which takes the values 0, 1, 4, 9, that is the squares of the values used to
code tobacco consumption. We shall call this new variable ‘tobsq’. The
model is then fitted by including both tobacco and tobsq and declaring
them as quantitative variables. The regression equations for this model
are given in Table 25.6 and these show that when [Tobsq] is zero the dose-
response is log-linear. Table 25.7 shows the tobacco effects for each level
relative to the previous one, predicted from the quadratic model, and these
show that the parameter [Tobsg] measures the degree to which the dose-
response relationship departs from linearity.

The log-quadratic model also provides another way of testing for de-
partures from a log-linear dose-response relationship, by comparing the
models

log(Odds) - = Corner + Alcohol + [Tobacco]
log(Odds) = Corner + Alcohol + [Tobacco| + [Tobsq].
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The comparison of these two models provides a test (on one degree of
freedom) which will be sensitive to a departure from linearity in which the
effect of tobacco increases with level ([Tobsq]> 0), or decreases with level
([Tobsq]< 0).

25.3 How many categories?

When collecting data, exposure is often measured as accurately as possible
for individuals and only later are the observed values grouped into a rel-
atively small number of categories. For example, the number of previous
births would be recorded exactly, but might then be grouped as
0, 1-3, 4-6, 7-9, 10+ .

When the variable is to be treated as categorical it is best to keep the
number of categories small; three may be enough, and five is usually a
maximum number. For exploratory analyses the use of just two categories
has the advantage that there is only one effect to interpret, and it can often
be easier to see what is going on.

The number of subjects in each category should be roughly the same,
and to achieve this tertiles, quartiles or quintiles of the distribution of
exposure are often used. Tertiles define three equal-sized groups, quartiles
define four equal-sized groups, and quintiles define five such groups. This
is quite a sensible way of choosing the grouping intervals provided the
actual intervals are reported. A serious disadvantage is that such grouping
intervals will vary from study to study, thus making it harder to compare
findings.

When the variable is to be treated as quantitative there is no penalty
in taking a larger number of categories. In the extreme case the original
values are used. However, it is best to avoid the situation where one or two
of the subjects have much higher values than all the rest. This can occur
with an exposure like the number of previous sexual partners, which might
lie between 0 and 10 for most subjects but reach numbers in excess of 100
for a few. In such a case the few subjects with high values can dominate
the fit of a model, and it will be best to group the values so that all the
high ones fall into a group such as 15 or more.

25.4 Indicator variables

In order to fit a model to data the computer program must use the abbre-
viated description of the model to form the regression equations. These
express the log rate (or log odds) parameter for each record as a linear
combination of new parameters. For example, when the variable alcohol
is entered in a model as categorical with levels coded 0, 1, 2, and 3, the
regression equations include the parameter Alcohol(1) for records in which
alcohol is at level 1, the parameter Alcohol(2) for records in which alcohol
is at level 2, and the parameter Alcohol(3) for records in which alcohol is
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Table 25.8. Indicator variables for the three alcohol parameters

A; Ay Az "Level log(Odds) = Corner + ---
0 0 0 0 -
1
0
0

0 o0 1 Alcohol(1)
1 0 2 Alcohol(2)
0 .1 3 Alcohol(3)

~

at level 3. The way the program does this is to create an indicator variable
for each parameter. These variables are coded 1 for records which include
the parameter and 0 otherwise. The indicator variables A;, Az, Az for the
three alcohol parameters are shown in Table 25.8 alongside the levels of al-
cohol. Note that A;j, which indicates when Alcohol(1) should be included,
takes the value 1 when alcohol is at level 1, and so on.

Exercise 25.5. Repeat Table 25.8 to show indicator variables for the case where
both alcohol and tobacco have four levels.

A variable which is treated as quantitative acts as its own indicator
since the way the variable is coded indicates what multiple of the linear
effect parameter is to be included in the regression equations. For example,
when tobacco is included as a quantitative variable, coded 0, 1, 2, and 3,
the equations include the parameter [Tobacco] when tobacco is at level 1,
twice the parameter [Tobacco] when tobacco is at level 2, and three times
the parameter [Tobacco] when tobacco is at level 3. The coding of the
tobacco variable thus indicates which multiple of the parameter is to be
included in the model.

INTERACTION PARAMETERS

‘When interaction terms are included in the model, indicator variables are
again used to form the regression equations. For simplicity we shall consider
the situation where tobacco has only two levels, 0 for non-smokers and 1 for
smokers. The model in which both alcohol and tobacco are categorical, and
which contains interaction terms, is shown in full in Table 25.9. Indicator
variables A;, A2, As have been used for alcohol, and the indicator variable
T has been used for tobacco. Note that when tobacco has only two levels,
coded 0 and 1, it serves as its own indicator variable.

The indicator variable for Alcohol(1)-Tobacco(1) takes the value 1 when
both alcohol and tobacco are at level 1, and 0 otherwise. The indicator vari-
able for Alcohol(2)-Tobacco(1) takes the value 1 when alcohol is at level 2
and exposure is at level 1, and 0 otherwise, and so on. The most convenient
way of generating these interaction indicator variables is by multiplying to-
gether pairs of the original indicator variables for alcohol and tobacco. This
is shown in Table 25.10: the indicator for Alcohol(1)-Tobacco(1) is found
from the product of Ay and T'; the indicator for Alcohol(2)-Tobacco(l) is



256 MODELS FOR DOSE-RESPONSE

Table 25.9. The model with interaction between alcohol and tobacco
Alc.  Tob. log(Odds) = Corner + - -

0 0

0 1 Tobacco(l)

1 0  Alcohol(1)

1 1 Alcohol(1) + Tobacco(1) + Alcohol(1)-Tobacco(1)
2 0  Alcohol(2) :

2 1 Alcohol(2) + Tobacco(1) + Alcohol(2)-Tobacco(1)
3 0 Alcohol(3)

3 1 Aleohol(3) + Tobacco(1) + Alcohol(3)-Tobacco(1)

Table 25.10. Indicator variables for interaction parameters

Al Ay A3 T A -T A, T A;-T
0 0 0 o 0 0 0
0 0 0 1 0 0 0
1 0 0 o 0 0 0
1 0 0 1 1 0 0
0 1 0 o 0 0 0
0 1 -0 1 0 1 0
0 0 1 0 0 0 0
0 0 1 1 0 0 1

made up from product of A; and T, and so on. When the categorical
variables are on a and b levels respectively there are (a — 1)(b — 1) new
indicators for the interaction parameters. )

In the first regression programs it was left to the user to create indicator
variables for all parameters other than those referring to quantitative vari-
ables. Although it is rarely necessary to do this today, indicator variables
are still important when we wish to use a non-standard parametrization of
a regression model.

25.5 The zero level of exposure

The level of exposure which is coded zero is often qualitatively different
from the other levels. For example, zero previous births represents a very
different biological experience from any other point on this scale. In such
cases it may be better to omit the zero level when estimating the dose-
response relationship, by allowing the response of at zero dose to differ
from the general relationship (see Fig. 25.1). A parameter for each of these
comparisons can be included in a model by using the indicator variable for
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log(Rate)

T T

0 1 2 3

Dose, =

Fig. 25.1. Separating zero exposure from the dose-response.

Table 25.11. Separating zero exposure from the dose-response

Tobacco Non-smoker log(Odds) = Corner + - - -

0 1 [Non-smoker]|
1 0 1x[Tobacco]
2 0 2x[Tobacco]
3 0 3x{Tobacco]

non-smokers to fit the model
log(Odds) = Corner + [Non-smoker| + [Tobacco.

The regression equations for all four dose levels are shown in Table 25.11.
The parameter [Non-smoker| measures the discrepancy between the log
odds for non-smokers and that predicted by extrapolation of the dose-
response line to zero dose.

25.6 Using indicators to reparametrize the model

Indicator variables provide a convenient way of changing from one set of
parameters to another. We shall give one example, namely changing from
parameters which compare each level with level 0, to parameters which
compare each level with the one before. Using tobacco as an example, the
first set of parameters are Tobacco(1), Tobacco(2), and Tobacco(3). We
shall call the new parameters Tobdiff(1), Tobdiff(2), and Tobdiff(3). The
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Table 25.12. Indicators to compare each level with the one before

Tobacco D; D; D,
0 0 0 0

1 1 0 0
2 1 1 0
3 1 1 1

relationship between the new parameters and the old is

Tobdiff(1) = Tobacco(1)
Tobdiff(2) = Tobacco(2) — Tobacco(l)
Tobdiff(3) = Tobacco(3) — Tobacco(2).

This relationship may be inverted to give the old in terms of the new as

Tobacco(l) = Tobdiff(1)
Tobacco(2) = Tobdiff(1) + Tobdiff(2)
Tobacco(3) = Tobdiff(1) + Tobdiff(2) + Tobdiff(3)

Let the indicator variables for Tobdiff(1), Tobdiff(2), Tobdiff(3), be denoted
by D1, Dy, Ds. The first of these should indicate Tobdiff(1) when tobacco
is at level 1, 2, or 3; the second should indicate Tobdiff(2) when tobacco is
at level 2 or 3; and the third should indicate Tobdiff(3) when tobacco is at
level 3. Their values are shown in Table 25.12.

Solutions to the exercises

25.1 The estimates of the new parameters will be

Tobacco(1) 0.5887
Tobacco(2)—Tobacco(1)  0.4373
Tobacco(3)—Tobacco(2) 0.3830

and

Alcohol(1) 0.2897
Alcohol(2)—Alcohol(1)  0.5540
Alcohol(3)—Alcohol(2) 0.5343

25.2 The parameter represents the change in log odds for each increase
in level of tobacco consumption.
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25.3 The combined effect on the log odds is
+(3 x 0.4901) + (3 x 0.4517) = 2.8254.

This corresponds to a multiplicative effect of x16.87 on the odds. When
alcohol and tobacco are both treated as categorical the combined effect on
the log odds is ’

+1.3780 + 1.4090 = 2.7870

which corresponds to a multiplicative effect of x16.23 on the odds.
25.4 (a) The first model has 7 parameters, the second has 5. (b) Starting

with Tobacco(1), Tobacco(2), and Tobacco(3), change to the parameters
New(1), New(2), and New(3), where

New(l) = Tobacco(1)
New(2) = {Tobacco(2) — Tobacco(1)} — Tobacco(1)
New(3) = {Tobacco(3) — Tobacco(2)} — Tobacco(l).

Then New(1) measures the effect of changing level from 0 to 1; New(2)
measures the difference between this and the effect of changing level from
1 to 2; New(3) measures the difference between this and changing level
from 2 to 3. The model with all three parameters allows separate effects
of changing level while the model with New(2) and New(3) equal to zero
imposes the constraint that there is a common effect of changing level.

{c) When the first model is a significantly better fit than the second model
it means that there is a significant departure from linearity in the dose-
response.
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25.5 Let Aj, Az, As, T1,T%2,T5 be the indicator variables for alcohol and
tobacco. The table below shows how these variables are coded and the
regression model which is fitted when all the indicators are included.

Ay Ay A3 T log(Odds) = Corner + - --

Tobacco(1)
Tobacco(2)
Tobacco(3)
Alcohol(1)
Alcohol(1) + Tobacco(1)
Alcohol(1) + Tobacco(2)
Alcohol(1) + Tobacco(3)
Alcohol(2)
Alcohol(2) + Tobacco(1)
Alcohol(2) + Tobacco(2)
Alcohol(2) + Tobacco(3)
(
(
(
(

Alcohol(3)

Alcohol(3) + Tobacco(1)
Alcohol(3) + Tobacco(2)
Alcohol(3) + Tobacco(3)
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